Support for Flexibility and User Control of
Worksharing in OpenMP

Barbara M. Chapman, Lei Huang Gabriele Jost
University of Houston Sun Microsystems, Inc.
<{chapman, | ei huang}@s. uh. edu> <gabri el e. j ost @un. con>
Haogiang Jin Bronis R. de Supinski
NASA Ames Research Center Lawrence Livermore National Laboratory
<hj i n@as. nasa. gov> <supi nski @I nl . gov>

NAS Technical Report NAS-05-015, October 2005

Abstract

The set of features in the current OpenMP specification gesviessential functionality that was
selected mostly from existing shared-memory paralleliagfpn programming interfaces (APIs).

The requirements of current and emerging architecturesatipg systems, and applications prompt
us to evaluate and choose new features from many differepopals. In this paper, we describe
two application development experiences that exposedgirabwith expressivity and performance
as a result of limitations in the current OpenMP specificati®e then propose mechanisms to
overcome these limitations, including the notation of #tressubteams and thread topology. Our
goal is to identify language features that help improve igppbn performance while preserving

ease of programming.

1 Introduction

OpenMP is due for an upgrade. The set of features in exispegifications of the API provides essential
functionality that was selected mostly from existing skdamgemory parallel APIs. We now need to evaluate
and choose new features from many different proposals,readdordance with the requirements of current
and emerging architectures, operating systems, and apphs. In this paper, we describe two application
development experiences that exposed problems with estpitgsand performance as a result of limitations
in the current OpenMP specification. We then propose meshento overcome these limitations. Our
goal is to identify language features that help improve iappbn performance while preserving ease of
programming.

While parallelizing these applications with OpenMP, owahitity to control the assignment of work to
subsets of threads in the current thread team, and to orategihe work of different threads, artificially
limited the performance we could achieve. To overcome tlse diifficulty, we propose a new clause for
worksharing constructs that assigns the work to a subtedaheaxisting threads and notation for naming a
subteam. Further, we introduce the notion of a topologyctvigives a subteam a shape, and library routines
to retrieve the number of threads executing a constructeflsawa thread-id based on a named subteam and
any reshaping applied to it. We also propose new constroctgdsting and waiting for events to support
improved work coordination between threads. There isrstiich to be explored here; this paper gives a first
look at the direction our experiences suggest.

Our proposed mechanisms ultimately provide a means tarloettérol work distribution. In many cases,
work distribution control provides the same effect as daaitution control. However, work distribution is
a more general concept that is likely to improve performamtdisparate platforms while many inherently
architecture-dependent issues remain with attempts tvadatata distribution, such as distribution granu-
larity. The code examples and parallelization challengseiibed here come from two quite different areas.

The first example is based on difficulties encountered whigating an easy-to-maintain OpenMP version

of an industrial seismic data processing application farcetion on shared-memory processors (SMPs)
with hyperthreading. The second example comes from expergegained while working to create scalable

scientific applications on a large distributed shared-mgmptatform. We outline each of these problems

and our preferred strategy for overcoming them in the negt $ections. Then, we discuss related work
briefly before summarizing our findings.

2 Thread Subteams

Our first example is based on a seismic data processing amprietation software. We will first describe
the problem, and then introduce our solution of thread sub$eto overcome the problem.

2.1 The Example of Seismic Data Processing

The example is based on commercial seismic data processithgni@rpretation software, Kingdom Suite
from Seismic Micro-Technology, Inc. Kingdom Suite is aregrated geosciences interpretation software
package for Windows systems used by the energy industryeiselarch for oil. Our OpenMP implemen-
tation was applied to TracePak, an I/O-intensive module iojlom Suite to analyze and process two-
dimensional (2-D) and three-dimensional (3-D) post-steeismic data [9]. TracePak offers a variety of
filters, spectrum manipulations, attribute computati@rs] other signal operations to allow for a detailed
analysis of selected traces. The goal of our effort was tatera parallel program for execution on Windows-
based SMPs with hyperthreading enabled. An essentialreagant was that the parallel code be as close as
possible to the original sequential code to simplify its md@nance. Our findings are based on experiments
and analyses of execution behavior carried out on an HP watites with Dual Hyperthreading-enabled
CPUs.

The structure of the sequential program is shown in Fig. Mefé different seismic data processing
functions, mostly FFT-related operations, are invokedetlasn options selected by the user. This code
iteratively reads data from an input file, processes it usiifigrent transform functions in the specified
order, and then writes the results to an output file. The atnaiuseismic data typically handled in a job is
quite large, ranging from 100MB to 100GB, and reading andimgiconsume considerable time.

1. for (i=0; i<N;, i++) {

2. ReadFronFile(i,...);

3. for (j=0; j<ProcessingNum j++)

4. for (k=0; k<M k++) {

5. ProcessDat a(); // processing involves several
/ I different seismic functions

6. }

7. WiteResultsToFile(i);

8. }

Figure 1: A sequential pseudo-code fragment for seismig giaicessing

Since OpenMP does not support parallel I/0, we decided tiedbést strategy to parallelize the code of
Fig. 1 is to keep the 1/0O operations (lines 2 and 7) sequewtide overlapping them with the parallelized
computation (line 5), as illustrated by the timeline viewHRig. 2. A simple and straightforward way to
parallelize the computation is to enclose the innermosgt [@eloop) between threads in an “omp parallel
for” directive. Note that it is not feasible to parallelizgetouter loop {-loop) since there is a dependence

Load Data

Process
Data

Save Datad

\/

Timeline

Figure 2: Overlapping 1/0 with computation in the paralleissnic program

Load Data:

Process Data:

Save Data:

between the seismic data processing functions. Howevewiliveot achieve good scalability by only par-
allelizing the computation in this manner, since it doesowarlap the computation and I/O, and moreover,
frequently entering and leaving parallel regions will detgr performance. We need to create a parallel re-
gion that enloses the entire loop nest in order to achievegoak. We show such a version of our code in

Fig. 3.

Here, we first preload the data needed for the first iteratfchevi-loop (line 4). Then, we use “omp
single nowait” and “omp for schedule(dynamic)” so that dme&d reads the data for the next iteration and
the other threads will proceed to begin computing ith@op (line 11 of Fig. 3). Another thread writes to an
output file after the results are ready. When the threadsipenfig I/O complete their work, they may share

in the remaining computation under the dynamic scheduling.

1. #pragmaomp paralle

2. { #pragmaompsingle

3 { I/ preload data to be used in the first iteration of the i-loopria b
4, ReadFronFil e(0,...);

5. }

6 for (i=0; i<N, i++) {

7 #pragma omp single nowait

8 { I/ preload the data for next iteration of the i-loop
9. ReadFronFil e(i +1...);

10. }

11. for (j=0; j< ProcessingNun | ++)

12. #pragma omp for schedule(dynamic)

13. for(k=0; k<M k++) {

14. ProcessDat a(); // user configurable data processing functig
15. } /1 there is a barrier here

16. #pragma omp single nowait

17. {

18. WiteResultsToFile(i);

19. }

20. }

21. }

Figure 3: The OpenMP code for seismic data processing kernel

ns

Load Data
Load Data:

Process

Data Process Data:
Save Data .
Save Data:
X A .
Timeline

"omp for" implicit barrier causes the computation

threads to wait for I/O threads to complete.

Figure 4. Execution behavior of OpenMP seismic code from Big

The innermost, work-shared loop includes an implicit learait its end. Unfortunately, we cannot simply
remove it since the data processing functions must followexific sequential order: each iteration uses
results from the previous one. So although plenty of contmntaemains, the computing threads must wait
at the implicit global barrier from the time it is first reachentil the I/O has completed, as shown in Fig. 4.
Thus this approach does not fully overlap 1/0 operations @rdputation. A significant reprogramming
effort would be needed to overcome the problem. For exangehanging the order of the loops in the
nest would, if at all possible, require a complete rewritewldver, ease-of-use and maintenance motivated
our use of OpenMP. A parallelization strategy that requinegor code reorganization is not acceptable for
such a large commerical application. This also rules outnetdevel programming style that coordinates
threads explicitly and does not use directives.

2.2 Performance | mprovement

In a normal run, the ratio of I/O and computation is about 1. 2here the 1/O takes a little more time
than the computation does. Thus, if we could avoid includimg I/O threads in the barrier operation, it
should be possible to overlap I/O with the computation. Sithe current OpenMP specification does not
easily support this behavior, we combined OpenMP with Wivglthreads for reading and writing files and
achieved much greater overlap. Fig. 5 shows results on an\M8200 with dual Xeon 3.4 GHz CPUs, 1MB
L2 cache, 3GB memory, Intel extended memory 64, and hyptling enabled. The compiler used was
Microsoft Visual C++ in Visual Studio 2005 Beta 2 with OpenM&pport. The hybrid version improved
the performance by 25% on four threads over the standard \Dpeersion.

To achieve similar results with pure OpenMP, we require rapidms to separate the computational
threads from the data handling threads, and to synchrohg&ie dctivities in a proper fashion. We could
achieve the separation with three parallel sections: nedte, and computation. The computation section
would create a nested parallel region and share the work guit®threads. To synchronize properly, we
either prefetch data in the previous iteration, as in theecoldFig. 3, or use critical regions and arrays
of variables. Still, each iteration of the outer i-loop regqa a new parallel region if we are to retain the
sequential program structure.

2.3 Thread Subteam as a Solution

Nested parallelism can dynamically create, exploit anaitesite teams of threads and is well-suited to codes
with needs that change over time. Our code structure i€ stHtie relative amount of data and computation

@ sequential

3.0 — Il 4 OpenMP threads
1 20penMP + 2

25 | Windows threads 7

20

15 |

Speedup

05

0.0

Seismic Processing on two Xeon CPUs with HT

Figure 5: Performance comparison: OpenMP vs. hybrid OpeaMPWindows API codes

does not vary, and we expect the number of participatingatte@nd their roles to remain the same. Nested
parallelism is more powerful than we require. Thus, we psapa simpler mechanism that provides the
desired separation and the required synchronization.ifgadly, we define subteams of threads, similar to
subcommunicators in MPI. These subteams allow us to binéxbeution of a worksharing construct or a
barrier construct to a subset of threads in the current t€amty. the threads in the subteam participate in its
work, including any barrier operations encountered. Tahyonize the actions of multiple subteams, we
may use existing OpenMP constructs and take advantage sh#red memory.

To realize this idea, we define an additional “onthreadstustathat may be applied to worksharing
and barrier directives. This clause permits us to speceytéinget of a worksharing directive to work on a
subteam of threads. It may refer only to existing threads; in otherdgoin contrast to nested parallelism,
this does not create any new threads. When the subteam atithspecified is not the entire current team,
it restricts participation in the associated work to thec#ped members. In particular, implicit and explicit
barriers within the code it encloses do not block threadsatenot part of the subteam. This clause would
require minimal change to the current specification sineeetfitire team will share in the work by default.
Alternatively, we can define an “onthreads” directive thaild enclose an arbitrary structured block of code
within a parallel region. Work in the block would be carrieat by the specified subteam of threads.

Using the thread subteam notation, we can rewrite the exaoqale in Fig. 3 to that in Fig. 6. Line 5
and line 14 use the “onthreads” clause to limit the 1/O tovidiial thread, while line 7 defines a subteam of
threads to process data. The integer expression(s) indicaakes OpenMP’s thread-ids and array section
notation to specify the desired subset of threads. A gemertaltion for specifying thread range would be
“(f:1:s)” where f is the first thread-id] is the last thread-id, angis the step. The implicit barrier at line 12
applies only to the threads defined in the subteam from line 7.

Additional syntax could enable the programmer to name teabsets. New run-time library routines
would be provided to get the number of threads of a named anbénd to retrieve a subteam-internal con-
secutive thread number. A programmer might also want to ptrrthe order of threads in a subteam to
specify schedules that enforce a certain work distribytibat is, the assignment of specific work (chunks),
which would support data reuse by that thread. Although mdtieese (except possibly the library routines)
are essential, they would greatly increase the expresswemof this construct. Interactions between sub-
teams could be made explicit by providing new notation fanomnication between subteams of threads.
This might help a programmer reason about the structurei®ichmmunication and avoid programming
errors such as deadlock. The same construct might alsoeepainit-wise synchronization between threads
in a single subteam, e.g., when a dependence between tvablearéferences in a parallel loop would oth-

#pragma omp parallel
{ #pragmaomp single
ReadFronFil e(0,...); // preloads data for first iteration of i-loop
for (i=0; i<N, i++) {
#pragma omp single onthreads(0)
ReadFrontFil e(i +1...); // preload data for next iter. of i-loop
#pragma omp onthreads (2:omp_get_num_threads()-1)
for (j=0; j< ProcessingNum j++)
#pragma omp for schedule(dynamic)
for (k=0; k<M k++) {
ProcessDat a(); // user configurable data processing functions
} 1/ here is the group-internal barrier
#pragma omp barrier // this ensures we are ready for next iter.
#pragma omp single onthreads(1)
WiteResul tsToFile(i);

©CeNoO WD

e N N
wbh ko

=
s

Tl
o o
—

=
N
—

Figure 6: OpenMP code with the “onthreads” directive fossec data processing kernel

erwise require a barrier. In the code fragment reproducétign?, a post-wait notation does this succinctly
and we have named the thread team, whose order is a permutétiee original thread numbers (used here
only to illustrate the concept since the work distributiared not provide any data reuse).

#pragma omp parallel
{
#pragma omp team CompthreadsReordered = threads(omp_get_num_threads()-1:2:-1)
for (i =0; i <N i++) { //executed by all threads
#pragma omp single onthreads(0)
{ ReadFronFile(i);
#pragma omp post (datareadyli]) // signals reading is complete
} /1 thread(0) independently does this reading and posting
#pragma omp on CompthreadsReor dered
{ I/ subteam starts to work
#pragma omp wait (dataready[i]) // after data is ready

Figure 7: Excerpt from OpenMP code with named subteam andnyzots

The ability to divide work among subteams of threads, and touhave different subteams working
concurrently and independently, seems to be a fairly ne¢xtansion to the current APl and it has a variety
of potential uses. It would likely simplify the use of OpenM#thin third party libraries. It also enables
the specification of multi-disciplinary code ensembles padnits components written in traditional pro-
gramming languages to interact without the need to prowitiereal file-based interactions. It supports the
simpler case of multilevel parallelism with a fixed team aktds without the extra overheads and burden
of nested parallelism.

3 Worksharing and Synchronization Across L oop Nests

Scientific and engineering computations must exploit langmbers of threads, not only in emerging, very
large shared-memory systems, but also in smaller SMPs Withraultiprocessors. More attention must be
paid to achieving scalable code. Two of the authors prelyqueposed a set of language features to enable
the parallelization of multiple levels of loop nests [6]. éHe features allow specification of an appropriate
execution schedule and the assignment of threads to loefs)eas well as additional synchronization that
enables a pipelined execution scheme in the LU benchmank the NAS Parallel Benchmarks [1]. They
reported on a prototype implementation. This work was naggiel by the fact that applications of interest
did not scale to the desired CPU count, even though there wifasient inherent parallelism.

3.1 ThelLU Example

The LU application benchmark uses the symmetric successigerelaxation (SSOR) method to solve a
seven band block-diagonal system. Figure 8 illustratefother triangular phase of the LU kernel example.
References to values of elements of amraw line 4 of the code create dependences between loop desati
that prevent straightforward parallelization. Howevervave-front or a pipelined technique can enable
considerable levels of parallelism to be exploited, sitgevalue of an element efcan be computed once
the new values are available from the previous iteratiorachef the three dimensions.

1. do k =2, nz

2. doj =2, ny

3. doi = 2, nx

4, v(i,j,k) =v(i,j,k) +a*(v(i-1,j,k) +
& b*v(i,j-1,k) + c*v(i,j,k-1)

5

6 enddo

7 enddo

8. enddo

Figure 8: The LU computational kernel

A wave-front restructuring of the code reveals paralleligrat can be expressed with the standard
OpenMP parallel directive to update points on a diagonaigleoncurrently. However, this method suf-
fers from poor cache utilization. A pipelined approach, inicth data are partitioned as blocks in selected
dimensions, usually gives better cache performance. \Waillite the differences between wave-front and
pipelined parallelism in Fig. 9. Expression of the paralal in two dimensions would reduce the cost of
pipeline startup and shutdown, and support good cacherpeafae for this kernel. However, OpenMP
currently can only successfully exploit parallelism in alension. Using OpenMP parallelization in mul-
tiple dimensions would require nested parallelism, whisuits in multiple one-dimensional pipelines and
incurs high overheads [5].

3.2 Thread Topology

We introduce the notion of a thread topology to support el algorithms. A thread topology does
not create new threads; instead, it reshapes the threadg@oband associates a new naming scheme with
existing threads (whose default names are natural numtaetisig from zero). We can then use the topology
to specify a variety of new schedules for worksharing divest Our syntax requires the programmer to

wave—front pipelining
o o0 O O O O

@)
@)
@)

o o0 O O O O O

O 0O 0O OO0 O 0 O
O 0o'o 0o 0ol'o ©

, , , , ,
, , , , .
, , , , ,
, , , , ,
, , , ,

\\. N
k k

Figure 9. Schematic illustration of the wave-front and piped algorithms. 7 and k£ are the two data
dimensions./ in the left panel indicates a diagonal plane. Numbers in igife panel indicate partitioned
data blocks mapped to different threads.

provide the number of dimensions in the topology and thedionates within each dimension. To use this
properly, we will need a default strategy for mapping thedily numbered threads to a Cartesian grid. The
basic syntax of specifying a topology is:

I $onp topol ogy nane(ndim start, stop, stride, fixedorder)

wherenane defines a name of the topology. Thdi margument specifies the number of dimensions in the
topology. The argumentst art, st op, andst ri de are arrays with one entry per dimension to specify
the topological shapd.i xedor der is a Boolean variable that tells the compiler whether or hetdefault
strategy for associating these threads with the lineaathrexrmbers must be applied. If not, the system
can choose any mapping of the threads to the topology. Fongea if 16 threads have been created, the
directive

' $onp topol ogy nygrid(3, start, stop, stride, .false.)

can be used to reshape threads intb>a2 x 2 grid with coordinates from (0,0,0) to (3,1,1) or any other
numbering scheme we wish to define that uses 16 threads.sledabest art, stri de, andst op are
3-D arrays.

Once a topology is defined, we need to associate it with a Wwarksy construct using the “onthreads”
clause. We use standard section notation to specify thettafthe worksharing directive in each topological
grid dimension. We use “.” to denote the entire dimensionroteay (so worksharing to “onthreads(:)”
would map the computation to all threads). Dimensions nailired in the worksharing are marked via a
dummy “*” and the computation is replicated in those dimensi

The use of this notation is illustrated in Fig. 10 for the LUmuutational kernel. We introduce a 2-D
logical grid of threads with the same number of threads imeimension. We now want to use this and
our thread subteam clause to specify the target of our warksiconstruct. Thus, we map the iterations of
two different loops to threads using the convenience of ari&aiing scheme, our grid topology. We realize
this using two worksharing constructs (this notation doesconform to current OpenMP rules). The 2-
D topology is used to distribute the work in thendj loop nests among threads. The first worksharing
directive spreads iterations of thjeloop among the first dimension of the thread topology; theosd
directive maps iterations of theloop among thread-ids in the second dimension so that éaehd of the
grid has its own portion of the work of the loop nest.

nystart (1) = 1; nystart(2) =1 ... !assignvalues to mystart (:) and mystop(:)
I $omp paralle
I $omp topology grid(2,mystart,mystop,mystride, .true.)
I arrange threads logically into a square called grid

iaml = onp_get coord(grid,1)
iam2 = onp_get coord(grid,2) !mycoords in grid
1. do k =2, nz

I$omp wait grid (iam1-1,iam2) ! wait for thread below to complete its portion
I$omp wait grid (iaml,iam2-1) ! wait for thread on left to complete its portion
I$omp do onthreads(grid(:,*)) ! share out to first dimension of grid

2. doj =2, ny
I$omp do onthreads(grid(*,:)) ! share out to second dimension of grid
3. doi =2, nx
4. v(i,j,k) =v(i,j,k) +a*v(i-1,j,k) + b*v(i,j-1,k) +
& c*v(i,j,k-1)
5. S
6. enddo
I$omp end do nowait
7. enddo

I$omp end do nowait

I$omp post grid(iaml,iam2+1) ! indicate to thread on right that it is ready

I$omp post grid(iam1+1iam2) ! indicate to thread above that it is ready
8. enddo

Figure 10: The multilevel LU computational kernel usingetid topology

Finally, we need a mechanism to define synchronization letwiereads in a topology. We cannot
use existing features of OpenMP, since the interactioniredjus not between iterations but threads. This
is achieved here usingost andwai t directives with thread-ids, in this case 2-D ids defined by ou
topology. In our example, dependences require each thifghe topology to wait for its neighbors to the
left and below it to finish their computation. Once its workdisne, a thread signals its neighbors to the
right and above that they can continue. We have used a nothib seemed easiest in this case: it specifies
threads based on their relative position in the grid. Forilllexsynchronization, threads will need to be
able to signal arbitrary threads in the topology. To do sohdhread needs to be able to access its (possibly
multidimensional) logical id. The ability to synchronizetiveen threads is very important for implementing
the pipelined approach in the LU algorithm. In general, dlgas loosely synchronous algorithms. One of
the hardest parts of a translation of this kind of code isdingi false sharing of cached data. As suggested
by Liu et al. [8], creating private copies of the “local” piaris of arrays that can be updated in the loop nest,
and then copying the results back to the global shared asrayd possible way to do so.

4 Reated Work

The NanosCompiler team at the European Center for Pasatieh Barcelona (CEPBA) has proposed the
creation of groups of threads in association with paraéigions [2, 3, 4]. Their notation permits the user
to specify the number of independent teams of threads tHabevcreated. Since these thread groups are
associated with the parallel region, additional notat®nequired to assign work to the individual groups.

They also propose extensions to easily express the premedelations that originate pipelined computa-
tions. These extensions are also valid in the scope of nparadlelism and are based on the ability to name
worksharing constructs and to specify a predecessor-ssiceelationship between worksharing constructs
to support synchronization. In contrast, we specify thgetof a worksharing directive, i.e., the group of
threads that share the work. Further, our topology renatmesds to give the target a multidimensional
structure that simplifies specifying the desired targed.s€he predecessor-successor relationship imposes
an orderings in terms of iterations or sections, it imposesrdering on the actions of threads, so its mean-
ing is less intuitive. We refer to threads explicitly andjshavoid this problem. Furthermore, our proposal
does not involve nested parallelism and the associatedheadrand restrictions.

There have been a variety of proposals for multilevel loomlbelism. The SGI compiler for the Origin
platforms [7] provides limited support by accepting the SEHST clause on the OMP DO directive. The
NEST clause requires at least two variables as argumentemdifiy indices of subsequent DO-loops. The
identified loops must be perfectly nested. No code is alloletdeen the identified DO statements and the
corresponding END DO statements. The nest clause on the OBIEif2ctive informs the compiler that
the entire set of iterations across the identified loops @executed in parallel. The compiler can then
linearize the execution of the loop iteration and dividentheEmong the available single level of threads.

Intel has proposed a wavefront directive to enable wavéefegacution schema. Although this might
sometimes be appropriate, we expect that it will be hard kiezre good data locality in most cases. Our
proposal explicitly enables control of work distributioncg thus, enables the expression of data locality.

5 Conclusions

OpenMP is a shared-memory programming API that offers tbenge of performance and ease of use. It
is currently deployed on both small and large SMPs, inclyidiygstems with distributed global memory and

new platforms with hyperthreading. It seems possible thagjudicious addition of language features that
increase the power of expressivity might also improve theeaable performance of a variety of OpenMP

codes. In this paper, we introduced a unified notation forisavork among subteams of threads and for
flexibly executing multiple levels of loop nests in paraliecluding specifying the synchronization required

between the work performed by different threads. We ardteiphe addition of a few routines to the runtime

library that return the number of threads in a subteam anddbedinates of a thread in a topology. This

work could be extended in a variety of ways. Additional netatould be defined to name groups of threads,
to more easily specify multiple orderings, to handle syonfiration between threads in codes with different
kinds of boundary conditions, and perhaps to help a comaildrruntime system find an appropriate data
layout.

Acknowledgment

This work was partly performed by B. Chapman when she wasingsNASA Ames Research Center in
May 2005. We wish to thank Seismic Micro-Technology Inc.tfoir help in understanding Kingdom Suite
and Holly Amundson from the NAS Publications and Media gréagher useful edit comments.

References

[1] D. Bailey, T. Harris, W. Saphir, R. Van der Wijngaart, A.08, and M. Yarrow, “The NAS Parallel
Benchmarks 2.0,” RNR-95-020, NASA Ames Research Cent&5.19

10

[2]

[3]

[4]

[5]

[6]

[7]

M. Gonzalez, E. Ayguade, X. Martorell, J. Labarta, N. Haw, and J. Oliver. “NanosCompiler: Sup-
porting Flexible Multilevel Parallelism in OpenMP.” Contency: Practice and Experience. Special
issue on OpenMP, vol. 12, no. 12, pp. 1205-1218, October.2000

M. Gonzalez, E. Ayguade, X. Martorell and J. Labarta. fibiemg and Supporting Pipelined Executions
in OpenMP.” 2nd International Workshop on OpenMP Applicas and Tools, July 2001.

M. Gonzalez, J. Oliver, X. Martorell, E. Ayguade, J. Lataa and N. Navarro. “OpenMP Extensions for
Thread Groups and Their Run-time Support.” 13th Intermati®orkshop on Languages and Compil-
ers for Parallel Computing (LCPC’2000), New York (USA), 17-331, August 2000.

H. Jin, G. Jost, J. Yan, E. Ayguade, M. Gonzalez, and X.tbtafl, “Automatic Multilevel Paralleliza-
tion Using OpenMP,” Scientific Programming, Vol. 11, No. p, A77-190, 2003.

H. Jin and G. Jost. “Support of Multidimensional Partdie in the OpenMP Programming Model,”
WOMPEI2003, Tokyo, Japan, October 2003, in the Proceeddfigise International Symposium on
High Performance Computing (ISHPC-V).

MIPSPro 7 Fortran 90 Commands and Directives Referenarudl 007-3696-03.
http:/techpubs.sgi.com/.

[8] Z.Liu, B. Chapman, Y. Wen, L. Huang and O. Hernandez. ‘#xsas and Optimizations for the Trans-

lation of OpenMP Codes into SPMD Style,” Proc. WOMPAT 03, L8IZ716, 26-41, Springer Verlag,
2003.

[9] TracePak Module, www.seismicmicro.com/Pr@eo.htm.

11

